Name: Key

Final Review Chapters 4 – 6

Perform the indicated operation (4.1)

1.
$$\begin{bmatrix} 3 & 6 \\ -4 & -2 \end{bmatrix} + \begin{bmatrix} 1 & -4 \\ 0 & 6 \end{bmatrix}$$

3.
$$2\begin{bmatrix} 4 & 0 \\ 1 & 3 \end{bmatrix} + 3\begin{bmatrix} -1 & -2 \\ 5 & 7 \end{bmatrix}$$

$$\begin{bmatrix}
2 & -3 \\
3 & 4 \\
4 & 5
\end{bmatrix} - \begin{bmatrix}
9 & -3 \\
-2 & 5 \\
0 & 4
\end{bmatrix}$$

4.
$$\begin{bmatrix} 3 & 9 \\ -2 \end{bmatrix}$$

Let [A] =
$$\begin{bmatrix} 0 & 4 \\ -1 & -5 \end{bmatrix}$$
 [B] = $\begin{bmatrix} 2 & -6 \\ 3 & 1 \end{bmatrix}$ and [C] = $\begin{bmatrix} -1 & 3 \\ 0 & 2 \end{bmatrix}$

5.
$$[A]([B] + [C])$$

Evaluate the determinant of the matrix (4.3)

$$\begin{array}{ccc}
7. & \begin{bmatrix} 4 & -3 \\
7 & 2 \end{bmatrix}
\end{array}$$

8.
$$\begin{bmatrix} 6 & 3 & 1 \\ 1 & 0 & -1 \\ 13 & 9 & 12 \end{bmatrix} - 12$$

Find the area of the triangle (4.3)

Use Cramer's rule to solve the linear system (4.3)

10.
$$3x + y = 3$$

 $4x + 5y = -7$

$$X = 2$$

$$Y = -3$$

11.
$$2x + z = 6$$

 $3x - 2y + 4z = 13$
 $-y - 3z = -15$
 $y = 3$
 $z = 4$

Find the inverse of the matrix (4.4)

12.
$$\begin{bmatrix} 4 & 3 \\ 7 & 6 \end{bmatrix} \qquad \begin{bmatrix} 2 & -1 \\ -\frac{7}{3} & \frac{4}{3} \end{bmatrix}$$

13.
$$\begin{bmatrix} 1 & 2 \\ 4 & -8 \end{bmatrix} \qquad \begin{bmatrix} \frac{1}{2} & \frac{1}{8} \\ \frac{1}{4} & \frac{1}{16} \end{bmatrix}$$

Use an inverse matrix to solve the linear system (4.5)

14.
$$2x + 3y = 13$$

 $x - 5y = 0$
 $(x - 5) = 0$

15.
$$-4x - 3y = -2$$
 $\chi = 2$ $y = -2$ $y = -2$

Graph the quadratic function. Label the vertex and find the exact zeros (5.1) 16. $y = x^2 + 3x - 4$

16.
$$y = x^2 + 3x - 4$$

Vertex:
$$\left(-\frac{3}{2}, -\frac{25}{4}\right)$$

17.
$$y = (x + 3)^2 - 4$$

18.
$$y = (x + 8)(x + 3)$$

Vertex:
$$\left(\frac{-11}{2}, \frac{-25}{4}\right)$$

Graph the system of quadratic inequalities (5.7)

19.
$$y \ge x^2 - 4$$

 $y < -x^2 - x + 2$

Factor the trinomial (5.2)

20.
$$x^2 + 8x + 15$$
 $(x+3)(x+3)$

21.
$$m^2 - 9m + 20$$
 $(m - 5)(m - 4)$

22.
$$3x^2 + 11x - 4$$

$$(3x-1)(x+4)$$

23.
$$6x^2 + 5x - 6$$
 $(2 \times +3)(3 \times -2)$

24.
$$n^2 - 49$$

$$\left(n + 7\right) \left(n - 7\right)$$

$$25. \quad x^2 - 10x + 25$$

$$\left(x - 5\right)^2$$

Solve using factoring (5.2)

26.
$$x^{2} + 10x + 21 = 0$$

 $(x + 3)(x + 7) = 0$
 $(x - 3) = 7$

28.
$$x^{2}-8x=-15$$

 $x^{2}-8x+15=0$
 $(x-3)(x-5)=0$
 $x=3$ or $x=5$

Simplify the expression (5.3)

30.
$$\sqrt{32}$$

32.
$$3\sqrt{27} \cdot \sqrt{3}$$

34.
$$\sqrt{\frac{16}{25}}$$

$$\frac{4}{5}$$

27.
$$2x^{2}-13x-7=0$$

 $(2x+1)(x-7)=0$
 $x=-\frac{1}{2}$ or $x=7$

29.
$$8x^{2} + 5x = 2x^{2} + 4$$

 $(6x^{2} + 5x - 4 = 0)$
 $(3x + 4)(2x - 1) = 0$
 $(3x + 4)(2x - 1) = 0$

31.
$$\sqrt{125}$$
 5 $\sqrt{5}$

33.
$$\sqrt{15} \cdot \sqrt{3}$$

35.
$$\sqrt{\frac{81}{125}}$$
 $9\sqrt{5}$
 25

Write the expression as a complex number in standard form (5.4)

36.
$$(2+2i)+(5-i)$$

37.
$$(8-5i)-(1-2i)$$

38.
$$-10i(4+7i)$$

39.
$$(-1+2i)(11-i)$$

Solve the equation (5.4)

40.
$$x^2 = 144$$

41.
$$2x^2 = 400$$

42.
$$-4(x+2)^2 = -20$$

43.
$$\frac{1}{3}(x-4)^2=3$$

44.
$$\frac{x^2}{9} - 1 = 5$$

45.
$$x^2 = -16$$

46.
$$(x-3)^2 = -49$$

47.
$$-\frac{1}{4}(x+1)^2 = 5$$

Solve the equation by completing the square (5.5)

48.
$$x^2 - 6x = 7$$

49.
$$4x^2 + 40x + 280 = 0$$

Use the quadratic formula to solve the equation (5.6)

50.
$$4x^2 + x = 3$$

$$X = \frac{3}{4}$$
 or -1

51.
$$x^2 - 4x + 5 = 0$$

Simplify the expression (6.1)

52.
$$(6x^3y^4)^{-2}$$

53.
$$\frac{2x^{-3}y^{-5}}{4x^{-6}y^{3}}$$

$$\frac{\cancel{x}^{3}}{\cancel{2}\cancel{y}^{8}}$$

$$54. \quad \frac{x^{10}}{3y^4} \cdot \frac{9x^2y^2}{x^4y^3}$$

$$55. \quad \frac{15xy^4}{8x^3y^0} \cdot \frac{16x^5y^2}{5y^4}$$

$$6x^3y^2$$

Find the sum or difference (6.3)

56.
$$(2x^2 + 6x + 3) + (3x^2 + 4x + 4)$$
 57. $(5x^3 - 2x^2 + 7) - (8x^2 - 11)$

$$5x^{2} + 10x + 7$$

57.
$$(5x^3 - 2x^2 + 7) - (8x^2 - 11)$$

$$5x^3 - 10x^2 + 18$$

Find the product of the polynomials (6.3)

58.
$$(x+7)(x-5)$$

$$x^{2} + 2x - 35$$

59.
$$(x^2 - 3x + 2)(x^2 + 4)$$

$$x^{4} - 3x^{3} + 6x^{2} - 12x + 8$$

60.
$$(x+1)(x+3)(2x-1)$$

$$2x^{3} + 7x^{2} + 2x - 3$$

61.
$$(x+3)^3$$

$$x^{3} + 9x^{2} + 27x + 27$$

Divide using long division (6.5)

62.
$$(x^3 - 2x^2 - 8x + 5) \div (x - 1)$$

$$\chi^{2} - \chi - 9 - \frac{4}{\chi - 1}$$

63.
$$(5x^2-6) \div (x-2)$$

$$5 \times + 10 + \frac{14}{x-2}$$

Divide using synthetic division (6.5)

64.
$$(3x^4 - 17x^3 + 13x^2 - 24x + 16) \div (x - 2)$$
 65. $(4x^4 + 2x^2 - x + 5) \div (x + 2)$

$$3x^{3} - 11x^{2} - 9x - 42 - \frac{68}{x-2}$$
 $4x^{3} - 8x^{2} + 18x - 37 + \frac{79}{x+2}$

65.
$$(4x^4 + 2x^2 - x + 5) \div (x + 2)$$

$$4x^3 - 8x^2 + 18x - 37 + \frac{79}{x+2}$$

Factor the polynomial function. Then find all the zeros of the function (6.7)

66.
$$f(x) = x^3 - 2x^2 - 11x + 12$$

$$f(x) = (x+3)(x-1)(x-4)$$

67.
$$f(x) = x^3 - x^2 + 4x - 4$$

$$F(x) = 2i) (x - (x-1)(x+2i)$$

$$2i - 2i,$$

68.
$$f(x) = x^4 + 2x^3 - 12x^2 - 40x - 32$$

$$F(x) = (x - 4)(x + 2)^3$$

$$F(x) = (x - 4)(x + 2)^3$$

Write a polynomial function of least degree that has real coefficients, the given zeros and a leading coefficient of $1\,(6.7)$

$$F(x) = x^3 - 3x^2 - 46x + 168$$

71. Tasty Bakery sells three kinds of muffins: chocolate chip muffins at 35 cents each, oatmeal muffins at 40 cents each and cranberry muffins at 45 cents each. Charles buys a total of 23 muffins and spends \$9.60. He buys three times as many cranberry muffins as chocolate chip muffins. How many of each type of muffin did he buy?

Write a system of equations that represents this problem.

Solve the system of equations.

Chocolate Chip Muffins: 4
Oatment Muffins: 7
Cranberry Muffins: 12