name: Hey
Final Review Chapters 4-6
Perform the indicated operation (4.1)

1. $\left[\begin{array}{cc}3 & 6 \\ -4 & -2\end{array}\right]+\left[\begin{array}{cc}1 & -4 \\ 0 & 6\end{array}\right]$
2. $\left[\begin{array}{cc}2 & -3 \\ 3 & 4 \\ 4 & 5\end{array}\right]-\left[\begin{array}{cc}9 & -3 \\ -2 & 5 \\ 0 & 4\end{array}\right]$

$$
\left[\begin{array}{rr}
4 & 2 \\
-4 & 4
\end{array}\right]
$$

$$
\left[\begin{array}{cc}
-7 & 0 \\
5 & -1 \\
4 & 1
\end{array}\right]
$$

3. $2\left[\begin{array}{ll}4 & 0 \\ 1 & 3\end{array}\right]+3\left[\begin{array}{cc}-1 & -2 \\ 5 & 7\end{array}\right]$
4.

I 3 $\begin{array}{ll} & 9\end{array}\left[\begin{array}{c}2 \\ 6 \\ -2\end{array}\right]$
$\left[\begin{array}{cc}5 & -6 \\ 17 & 27\end{array}\right]$

$$
[2]
$$

$$
\operatorname{Let}[\mathrm{A}]=\left[\begin{array}{cc}
0 & 4 \\
-1 & -5
\end{array}\right][\mathrm{B}]=\left[\begin{array}{cc}
2 & -6 \\
3 & 1
\end{array}\right] \quad \text { and }[\mathrm{C}]=\left[\begin{array}{cc}
-1 & 3 \\
0 & 2
\end{array}\right]
$$

5. $[\mathrm{A}]([\mathrm{B}]+[\mathrm{C}])$

$$
\left[\begin{array}{cc}
12 & 12 \\
-16 & -12
\end{array}\right]
$$

6. $2[A][B]$

$$
\left[\begin{array}{rr}
24 & 8 \\
-34 & 2
\end{array}\right]
$$

Evaluate the determinant of the matrix (4.3)

7. $\left[\begin{array}{cc}4 & -3 \\ 7 & 2\end{array}\right]$ 29
8. $\left[\begin{array}{ccc}6 & 3 & 1 \\ 1 & 0 & -1 \\ 13 & 9 & 12\end{array}\right]$

$$
-12
$$

Find the area of the triangle (4.3)
9.

$$
A_{\text {rena }}=11
$$

Use Cramer's rule to solve the linear system (4.3)
10. $3 x+y=3$
$4 x+5 y=-7$

$$
\begin{aligned}
& x=2 \\
& y=-3
\end{aligned}
$$

11. $2 \mathrm{x}+\mathrm{z}=6$
$3 x-2 y+4 z=13$ $-y-3 z=-15$

$$
\begin{aligned}
& x=1 \\
& y=3 \\
& z=4
\end{aligned}
$$

Find the inverse of the matrix (4.4)
12.

$$
\left[\begin{array}{ll}
4 & 3 \\
7 & 6
\end{array}\right] \quad\left[\begin{array}{cc}
2 & -1 \\
-\frac{7}{3} & \frac{4}{3}
\end{array}\right]
$$

13. $\left[\begin{array}{cc}1 & 2 \\ 4 & -8\end{array}\right]\left[\begin{array}{cc}\frac{1}{2} & \frac{1}{8} \\ \frac{1}{4} & -\frac{1}{16}\end{array}\right]$

Use an inverse matrix to solve the linear system (4.5)
14. $2 x+3 y=13$

$$
\begin{aligned}
& x=5 \\
& y=1
\end{aligned}
$$

15.

$$
\begin{array}{ll}
-4 x-3 y=-2 & x=2 \\
2 x+y=2 & y=-2
\end{array}
$$

Graph the quadratic function. Label the vertex and find the exact zeros (5.1)
16. $y=x^{2}+3 x-4$

Vertex: $\left(-\frac{3}{2},-\frac{25}{4}\right)$

17. $\mathrm{y}=(\mathrm{x}+3)^{2}-4$

Vertex: $(-3,-4)$

18. $y=(x+8)(x+3)$

$$
\text { Vertex: }\left(\frac{-11}{2}, \frac{-25}{4}\right)
$$

Graph the system of quadratic inequalities (5.7)
19. $\mathrm{y} \geq \mathrm{x}^{2}-4$

$$
y<-x^{2}-x+2
$$

Factor the trinomial (5.2)
20. $x^{2}+8 x+15$

$$
(x+5)(x+3)
$$

22. $3 \mathrm{x}^{2}+11 \mathrm{x}-4$

$$
(3 x-1)(x+4)
$$

24. $n^{2}-49$

$$
(n+7)(n-7)
$$

21. $m^{2}-9 m+20$

$$
(m-5)(m-4)
$$

23. $6 x^{2}+5 x-6$

$$
(2 x+3)(3 x-2)
$$

25. $x^{2}-10 x+25$

$$
(x-5)^{2}
$$

Solve using factoring (5.2)
26. $x^{2}+10 x+21=0$

$$
\begin{aligned}
& x^{x^{2}+10 x+21=0} \\
& (x+3)(x+7)=0 \\
& x=-3 \text { or } x=-7
\end{aligned}
$$

28. $x^{2}-8 x=-15$

$$
\begin{aligned}
& x^{2}-8 x+15=0 \\
& (x-3)(x-5)=0 \\
& x=3 \text { or } x=5
\end{aligned}
$$

Simplify the expression (5.3)
30. $\sqrt{32}$

$$
4 \sqrt{2}
$$

32. $3 \sqrt{27} \cdot \sqrt{3}$

$$
27
$$

34. $\sqrt{\frac{16}{25}}$

$$
\frac{4}{5}
$$

27. $2 x^{2}-13 x-7=0$

$$
\begin{aligned}
& (2 x+1)(x-7)=0 \\
& x=-\frac{1}{2} \text { or } x=7
\end{aligned}
$$

29. $8 x^{2}+5 x=2 x^{2}+4$

$$
\begin{aligned}
& 6 x^{2}+5 x-4=0 \\
& (3 x+4)(2 x-1)=0 \\
& x=-\frac{4}{3} \quad \text { or } \quad x=\frac{1}{2}
\end{aligned}
$$

31. $\sqrt{125}$

$$
5 \sqrt{5}
$$

33. $\sqrt{15} \cdot \sqrt{3}$

$$
3 \sqrt{5}
$$

35.

$$
\begin{aligned}
& \sqrt{\frac{81}{125}} \\
& \frac{9 \sqrt{5}}{25}
\end{aligned}
$$

Write the expression as a complex number in standard form (5.4)
36. $(2+2 \mathrm{i})+(5-\mathrm{i})$
37. $(8-5 \mathrm{i})-(1-2 \mathrm{i})$

$$
7+i
$$

$$
7-3 i
$$

38. $-10 \mathrm{i}(4+7 \mathrm{i})$

$$
70-40 i
$$

39. $(-1+2 i)(11-i)$

$$
-9+23 i
$$

Solve the equation (5.4)
40. $\mathrm{x}^{2}=144$

$$
x=12 \text { or }-12
$$

42. $-4(x+2)^{2}=-20$

$$
\begin{gathered}
x=-2+\sqrt{5} \\
\quad \text { or } \\
=-2-\sqrt{5}
\end{gathered}
$$

44. $\frac{x^{2}}{9}-1=5$

$$
x=3 \sqrt{6} \text { or }-3 \sqrt{6}
$$

41. $2 \mathrm{x}^{2}=400$

$$
x=10 \sqrt{2} \text { or }-10 \sqrt{2}
$$

43. $\frac{1}{3}(x-4)^{2}=3$

$$
x=7 \text { or } 1
$$

45. $\mathrm{x}^{2}=-16$

$$
x=4 i \text { or }-4 i
$$

46. $(x-3)^{2}=-49$

$$
x=3+7 i \text { or } 3-7 i
$$

47. $-\frac{1}{4}(x+1)^{2}=5$

$$
x=-1+2 \sqrt{5} i \text { or }-1-2 \sqrt{5} i
$$

Solve the equation by completing the square (5.5)
48. $x^{2}-6 x=7$

$$
x=-1 \text { or } 7
$$

49. $4 x^{2}+40 x+280=0$

$$
x=-5+3 \sqrt{5} i \text { or }-5-3 \sqrt{5} i
$$

Use the quadratic formula to solve the equation (5.6)
50. $4 \mathrm{x}^{2}+\mathrm{x}=3$

$$
x=\frac{3}{4} \text { or }-1
$$

51. $x^{2}-4 x+5=0$

$$
x=2+i \text { or } 2-i
$$

Simplify the expression (6.1)
52. $\left(6 x^{3} y^{4}\right)^{-2}$

53. $\frac{2 x^{-3} y^{-5}}{4 x^{-6} y^{3}}$
$\frac{x^{3}}{2 y^{8}}$
55.

$$
\begin{aligned}
& \frac{15 x y^{4}}{8 x^{3} y^{0}} \cdot \frac{16 x^{5} y^{2}}{5 y^{4}} \\
& 6 x^{3} y^{2}
\end{aligned}
$$

Find the sum or difference (6.3)
56. $\left(2 x^{2}+6 x+3\right)+\left(3 x^{2}+4 x+4\right)$
57. $\left(5 \mathrm{x}^{3}-2 \mathrm{x}^{2}+7\right)-\left(8 \mathrm{x}^{2}-11\right)$

$$
5 x^{2}+10 x+7
$$

Find the product of the polynomials (6.3)
58. $(x+7)(x-5)$

$$
x^{2}+2 x-35
$$

59. $\left(x^{2}-3 x+2\right)\left(x^{2}+4\right)$

$$
x^{4}-3 x^{3}+6 x^{2}-12 x+8
$$

60. $(\mathrm{x}+1)(\mathrm{x}+3)(2 \mathrm{x}-1)$

$$
2 x^{3}+7 x^{2}+2 x-3
$$

Divide using long division (6.5)
62. $\left(x^{3}-2 x^{2}-8 x+5\right) \div(x-1)$

$$
x^{2}-x-9-\frac{4}{x-1}
$$

Divide using synthetic division (6.5)
64. $\left(3 \mathrm{x}^{4}-17 \mathrm{x}^{3}+13 \mathrm{x}^{2}-24 \mathrm{x}+16\right) \div(\mathrm{x}-2)$

$$
3 x^{3}-11 x^{2}-9 x-42-\frac{68}{x-2}
$$

63. $\left(5 \mathrm{x}^{2}-6\right) \div(\mathrm{x}-2)$

$$
5 x+10+\frac{14}{x-2}
$$

65. $\left(4 x^{4}+2 x^{2}-x+5\right) \div(x+2)$

Factor the polynomial function. Then find all the zeros of the function (6.7)
66. $f(x)=x^{3}-2 x^{2}-11 x+12$

$$
\begin{aligned}
& f(x)=(x+3)(x-1)(x-4) \\
& \text { Zeros: }-3,1,4
\end{aligned}
$$

67.

$$
\begin{aligned}
& f(x)=x^{3}-x^{2}+4 x-4 \\
& f(x)=2 i)(x-(x-1)(x+2 i) \\
& z \operatorname{eros}: 1,2 i-2 i
\end{aligned}
$$

$$
\begin{aligned}
& \text { 68. } f(x)=x^{4}+2 x^{3}-12 x^{2}-40 x-32 \\
& f(x)=(x-4)(x+2)^{3} \\
& z \text { eros: } 4,-2,-2,-2
\end{aligned}
$$

Write a polynomial function of least degree that has real coefficients, the given zeros and a leading coefficient of 1 (6.7)
69. $4,6,-7$

$$
f(x)=x^{3}-3 x^{2}-46 x+168
$$

70. $4 i,-4 i, i$

$$
f(x)=x^{4}+17 x^{2}+16
$$

71. Tasty Bakery sells three kinds of muffins: chocolate chip muffins at 35 cents each, oatmeal muffins at 40 cents each and cranberry muffins at 45 cents each. Charles buys a total of 23 muffins and spends $\$ 9.60$. He buys three times as many cranberry muffins as chocolate chip muffins. How many of each type of muffin did he buy?

Write a system of equations that represents this problem.

Solve the system of equations.
Chocolate Chip Muffins: 4
Oatmeal Muffins:?
Cranberry Muffins: 12

