name: Key
Chapter 3 Review
Use the cube at the right to identify the figure.

1. Identify two segments parallel to $\overline{D H}$

$$
\overline{B F}, \overline{A E} \text { or } \overline{C G}
$$

2. Identify two segments perpendicular to $\overline{F D}$

$$
\overline{C D} \text { and } \overline{E F}
$$

3. Identify two segments skew to $\overline{A E}$

$$
\overline{C D}, \overline{G H}, \overline{F H}, \overline{\beta D} \text { or } \overline{F D}
$$

4. Identify two segments oblique to $\overline{F D}$

$$
\overline{F B}, \overline{F H}, \overline{D H} \text { or } \overline{B D}
$$

5. Identify a plane that is perpendicular to $\overline{E F}$

$$
A E G C \text { or BFHD }
$$

6. Identify two planes that are parallel
$A E G C$ and BF HD; ABDC and EFHG; AEFB and CGHD

Use the coordinates to answer the following questions.

A (-2, 1)
B $(1,2.5)$
C $(0,0)$
D $(6,0)$

7. Prove or Disprove that $\overleftrightarrow{A C} \| \overleftrightarrow{B D}$

Slope $\underset{A C}{\stackrel{A C}{\leftrightarrows}}=-\frac{1}{2}$
slope $\overrightarrow{B D}=-\frac{1}{2}$
$\stackrel{\rightharpoonup}{A C} \| \stackrel{B D}{ }$ since their slopes are equal
8. Prove or Disprove that $\overleftrightarrow{C B} \perp \overleftrightarrow{B D}$

Slope $\overrightarrow{C B}=\frac{5}{2}$
slope $\overrightarrow{B D}=-\frac{1}{2}$
$\overrightarrow{C D} \not \perp \overleftrightarrow{B D}$ since their slopes are not opposite reciprocals. $\overleftrightarrow{C D} ; \overleftrightarrow{B D}$ are oblique
9. Write the equation of the line that passes through the following points: $(-5,4)$ and $\left(8,-\frac{55}{9}\right)$

$$
y=-\frac{7}{9} x+\frac{1}{9}
$$

10. Write the equation of the line that is perpendicular to $y=-2 x+4$ and that passes through the point $(-1,2)$.

$$
y=\frac{1}{2} x+\frac{5}{2}
$$

Use the figure to match each pair of lines with a word (match each word exactly once).
11.
ℓ_{1} and $\ell_{2} a$
a. Oblique
12. ℓ_{3} and $\ell_{4} C$
b. Perpendicular
13. ℓ_{2} and $\ell_{3} b$
c. Parallel
14. ℓ_{3} and $\ell_{5} d$
d. Coincident

Classify the angles in the diagram at the right.

15. $\angle 1$ and $\angle 2$

Alternate Interior xs
16. $\angle 1$ and $\angle 4$

Linear Pair, Adjacent,
17. $\angle 2$ and $\angle 3$

Corresponding $\Varangle s$
18. $\angle 1$ and $\angle 5$

Alternate Exterior es
19. $\angle 2$ and $\angle 4$

Consecutive Interior \&s
20. Find the values of x and y.

$$
\begin{aligned}
& x=13^{\circ} \\
& y=132^{\circ}
\end{aligned}
$$

21.

Given: $\overrightarrow{B D} \perp \overleftrightarrow{A C}$ Y $A B C$ is a straight angle

Prove: $\Varangle A B D \cong \Varangle D B C$

Reason
(1) $\overrightarrow{B D} \perp \overleftrightarrow{A C}$

Given
(2) $\Varangle A B D B a r$ right f

Def. of \perp Lines
(3) $m \Varangle A B D=90^{\circ}$

Def. of right as
(4) $\Varangle D B C$ is a right \Varangle

Def. of \perp lines
(5) $m \Varangle \triangle B C=90^{\circ}$

Defer of right ts
(6) $m \Varangle A B D=m+\triangle B C$

Substitution (5inio 3) or Trans, itive
(7) $\Varangle A B D \cong \Varangle D B C$ Def. of \cong
22.

Given:

$$
\begin{aligned}
& \angle 1 \cong \angle 2 \\
& \angle 3 \cong \angle 4
\end{aligned}
$$

Prove: $\quad n \| p$

Statement
(1) $41 \cong 42$
(2) $l 11 m$
(3) $44 \cong 45$
(4) $\Varangle 3 \cong \Varangle 4$
(5) $\Varangle 3 \cong \Varangle 5$
(6) $n \| p$
23.

Statement
(1) $m x 1=50^{\circ}$
(2) $\Varangle 1$ i 42 are a Linear Pair
(3) $41 \div x 2$ are supplementary
(4) $m \times 1+m \times 2=180^{\circ}$
(5) $50^{\circ}+m \neq 2=180^{\circ}$
(6) $m+2=130^{\circ}$
(7) $m \times 3=130^{\circ}$
(8) $m \neq 2=m * 3$
(9) $\Varangle 2 \cong \Varangle 3$
(10) $b \| c$

Given:

$$
\begin{aligned}
& m \angle 1=50^{\circ} \\
& m \angle 3=130^{\circ}
\end{aligned}
$$

$\angle 1$ and $\angle 2$ are a linear pair
Prove: $\quad b \| c$

Given
Given
Linear Pair Postulate
Def. of Supplementary is
Substitution (1 into 4)
Subtraction
Given
Substitution (7 into 6) or transitive Def. of \cong

At. Exterior ls Converse

