Name: Key ## **Chapter 3 Review** Use the cube at the right to identify the figure. 1. Identify two segments parallel to DH 2. Identify two segments perpendicular to FD 3. Identify two segments skew to \overline{AE} Identify two segments oblique to FD Identify a plane that is perpendicular to $\overline{\it EF}$ Identify two planes that are parallel ## AEGC and BFHD; ABOC and EFHG; AEFB and CGHD Use the coordinates to answer the following questions. - B (1, 2.5) - C(0, 0) - D (6, 0) 7. Prove or Disprove that $\overrightarrow{AC} \parallel \overrightarrow{BD}$ Slope $\overrightarrow{BD} = -\frac{1}{2}$ Slope $\overrightarrow{BD} = -\frac{1}{2}$ Slope $$AC = -\frac{1}{2}$$ Slope $BD = -\frac{1}{2}$ ACIIBD since their slopes are equal 8. Prove or Disprove that $\overrightarrow{CB} \perp \overrightarrow{BD}$ $5 \log \overrightarrow{CB} = \frac{5}{2}$ CD X BD since their slopes are not opposite reciprocals. ED : BD are oblique 9. Write the equation of the line that passes through the following points: (-5, 4) and (8, $-\frac{55}{9}$) $$V = -\frac{7}{9}X + \frac{1}{9}$$ 10. Write the equation of the line that is perpendicular to y = -2x + 4 and that passes through the point (-1, 2). $$y = \frac{1}{2}x + \frac{5}{2}$$ Use the figure to match each pair of lines with a word (match each word exactly once). - ℓ_1 and ℓ_2 **a.** Oblique 11. - 12. ℓ_3 and ℓ_4 **b.** Perpendicular - 13. ℓ_2 and ℓ_3 b c. Parallel - 14. ℓ_3 and ℓ_5 **d.** Coincident Classify the angles in the diagram at the right. 15. $\angle 1$ and $\angle 2$ Alternate Interior 45 16. \angle 1 and \angle 4 Linear Pair, Adjacent, Supplementa 18. \angle 1 and \angle 5 Alternate Exterior >s 19. $\angle 2$ and $\angle 4$ Consecutive Interior Xs 20. Find the values of x and y. 21. Given: BD __ AC XABC is a straight angle Prove: *ABD \(\cong \delta\) \(\text{D}\) \(\text{C}\) BN L AC - 2 ZABDB ~ right } - m & ABD = 900 - 9 4 DBC Baright 4 5 m 7 DBC = 900 - @ m x ABD = m & DBC - YABN = Y DBC (siven Def of I Lines Def. of right as Def of I Likes Der of right 45 Substitution (5 into 3) or Transitive Def. of = 22. Given: $\angle 1 \cong \angle 2$ $\angle 3 \cong \angle 4$ Prove: $n \parallel p$ | | Statement | Reason | |-----|-----------|---------------------------------------| | | 41242 | Gisen | | 2 | l 11 m | Corresponding &S Converse | | (3) | ¥4 = 45 | Alternate Interior &s Theorem | | 0 | \$3°¥4 | Given | | (5) | 43 ≈45 | Substitution (3 into 4) or Transitive | | 6 | allp | Corresponding &s Converse | Given: $m\angle 1 = 50^{\circ}$ $m \angle 3 = 130^{\circ}$ \angle 1 and \angle 2 are a linear pair Prove: $b \parallel c$ | | C | | | |------|-----------------------------|--------------------------------------|----| | | Statement | Reason | | | (1) | m x 1 = 50° | Given | | | 2 | \$1 i \$2 are a linear Pair | Given | | | Q | 91 5 x2 are supplementary | Linear Pair Pastulate | | | 9 | m x 1 + m x 2 = 1800 | Def. of Supplementary \$5 | | | (5) | 50° +m = 2 = 180° | Substitution (1 into 4) | | | (b) | m = 2= 1300 | Subtraction | | | 7 | mx 3 = 130° | Given | | | ক্তি | $m \neq 2 = m \neq 3$ | Substitution (7 into 6) or transitiv | 12 | | 9 | ¥2 = ×3 | Def. of ? | | | (0) | 6110 | Alt. Exterior >s Converse | |